
How McGill University manages, tests 
and deploys 1,000 Drupal websites 
with Ansible and Gitlab CI
DrupalCon Portland 2024

7 May | 16:10 PM



About me

Thomas Fline

Web Developer Analyst

McGill University, Montreal, Canada

thomas.fline@mcgill.ca

https://drupal.org/u/fengtan

https://github.com/fengtan

https://linkedin.com/in/thomasfline

https://www.mcgill.ca/it

mailto:thomas.fline@mcgill.ca
https://drupal.org/u/fengtan
https://github.com/fengtan
https://linkedin.com/in/thomasfline
https://www.mcgill.ca/it


McGill University

• 12 faculties

• 1,200 programs

• 10,000 courses

• 40,000 students

• 12,000 staff

• 1,000 Drupal websites

• 1,500 site managers

• 9 million page views/month

• 500,000 pages (published nodes)

• 30,000 blocks

One of the largest universities in Canada:



McGill University Web Services

Part of central IT services.

Offer uniform, Drupal-based 
websites to departments of 
the University.

10 team members including:

• Manager

• Backend developers

• Frontend developers

• Support analysts

VP Administration VP Communications VP Research Provost

IT

Web Services

HR

Faculty of 
Management

Faculty of Law

Faculty of 
Engineering

Faculty of Arts

President

Finance



McGill University Web Services

President
https://mcgill.ca/president

VP Administration
https://mcgill.ca/vpadmin

VP Communications
https://mcgill.ca/communications

VP Research
https://mcgill.ca/research

Provost
https://mcgill.ca/provost

IT
https://mcgill.ca/it

Web Services
https://mcgill.ca/web-services

Finance
https://mcgill.ca/financialservices

HR
https://mcgill.ca/hr

Faculty of 
Management

https://mcgill.ca/desautels

Faculty of Law
https://mcgill.ca/law

Faculty of 
Engineering

https://mcgill.ca/engineering

Faculty of Arts
https://mcgill.ca/arts

Part of central IT services.

Offer uniform, Drupal-based 
websites to departments of 
the University.

10 team members including:

• Manager

• Backend developers

• Frontend developers

• Support analysts



Website examples

Faculties

• https://www.mcgill.ca/arts

• https://www.mcgill.ca/music

• https://www.mcgill.ca/science

Administration

• https://www.mcgill.ca/hr

• https://www.mcgill.ca/it

Student life

• https://www.mcgill.ca/campus-life

• https://www.mcgill.ca/studentservices

Departments of study

• https://www.mcgill.ca/surgery

• https://www.mcgill.ca/philosophy

• https://www.mcgill.ca/geography

Course catalog and admissions

• https://www.mcgill.ca/study

• https://www.mcgill.ca/admissions

• https://www.mcgill.ca/exams

Services

• https://www.mcgill.ca/directory

• https://www.mcgill.ca/search

Museums

• https://www.mcgill.ca/redpath

• https://www.mcgill.ca/medicalmuseum

External relations

• https://www.mcgill.ca/newsroom

Research labs, conferences, etc...

https://www.mcgill.ca/arts
https://www.mcgill.ca/music
https://www.mcgill.ca/science
https://www.mcgill.ca/hr
https://www.mcgill.ca/it
https://www.mcgill.ca/campus-life
https://www.mcgill.ca/studentservices
https://www.mcgill.ca/surgery
https://www.mcgill.ca/philosophy
https://www.mcgill.ca/geography
https://www.mcgill.ca/study
https://www.mcgill.ca/admissions
https://www.mcgill.ca/exams
https://www.mcgill.ca/directory
https://www.mcgill.ca/search
https://www.mcgill.ca/redpath
https://www.mcgill.ca/medicalmuseum
https://www.mcgill.ca/newsroom


Website examples

https://www.mcgill.ca/law https://www.mcgill.ca/music

https://www.mcgill.ca/law
https://www.mcgill.ca/music


Agenda

1. Deployment: infrastructure

2. Deployment: application

3. Site Management

4. Development

5. Tests & Quality



Deployment: infrastructure



Manual deployment

Deploying the infrastructure was:

• Manual

• With privilege escalation (sudo root)

• On machines hosting multiple environments

Problems:

• No guarantee that environments are alike

• No guarantee that all servers in a given 
environment are alike

• Inappropriate permissions

• Lack of transparency

• No trace of changes



Segregated environments

Switched to VMs and segregated 
environments.

Made things worse: we ended up 
having to configure 13 machines 
manually.

Need for automation.



Ansible

Agentless configuration management 
system.

Runs an Ansible playbook (list of 
tasks) on remote hosts via ssh.

Guarantees:

• Consistent state of all 
environments

• Consistent state of all machines in 
a given environment

Problems:

• Execution environment specific 
to each developer

• No visibility on when, why, who 
updated the servers



Gitlab

Git repo, but also:

• Continuous Integration (CI) system

• Private container registry

• Hosting solution for static content (Gitlab 
Pages)

• Comprehensive API for interacting with Git 
repos, CI pipelines, container registry, etc

• Ticketing system & agile board

• Wiki, code snippets

• Etc.



Automated deployment
Deploying the infrastructure is now:

• Automated

• No direct escalation of privileges 
(root access)

• On environment-specific VMs

Guarantees:

• Environments are alike

• Servers in a given environment 
are alike

• Consistent 
execution environment

• Visibility with other developers 
and sysadmins

• All changes are peer-reviewed

• All changes are traced



Gitlab CI pipelines (infrastructure)

Test pipeline (main branch):

Production pipeline (deploy branch):

Merge main to deploy:

Get approval from sysadmins:



Gitlab CI jobs

History of all changes:Logs of all changes (output the Ansible executions):



Automated deployment everywhere

We now use Ansible to 
configure all our servers.

Our infrastructure can be 
discovered just by reading the 
Ansible playbook 
("Infrastructure as Code").

We can discover how servers 
managed by other teams are 
configured (e.g. MySQL servers 
managed by the DBA's).



Scheduled pipelines

Automatically run CI pipelines on a weekly basis, on all environments.

Reconciles servers with the Ansible playbook to prevent config drift.



Deployment: application



Multisite Drupal installation

1 website =

• 1 Apache config file

• 1 Drupal settings file (settings.php)

• 1 Drush alias file

• 1 MySQL database

• 4 directories (user files)

• 9 Active Directory groups

Codebase shared between all websites:

• Drupal core and its dependencies

• Drupal modules (custom & contrib)

• Drupal themes

• Drupal config



Application deployment

Same principle as for infrastructure.

CI pipeline executes Ansible which 
deploys the code and updates 
settings.php, Apache config, etc.

Differences compared to 
infrastructure playbooks:

• No privilege escalation

• No need to request approval of 
Merge Requests from sysadmins

• Playbook stored in same Git 
repo as our Drupal codebase



Git repo structure

Ansible playbook is part of our Drupal Git repo (outside of the web root), 
along with modules, themes, config, etc.

Allows to deploy all changes in a single Merge Request, for instance when 
adding a new module and updating settings.php accordingly.



Git branching model

Each topic branch is merged to qa and then main independently.

Allows to deploy exactly one feature at a time.



Gitlab CI pipelines (application)

Production pipeline
(main branch)

Test pipeline
(qa branch)



Gitlab CI job: deployment

Run Ansible tasks on prod environments (deploys 
updates to Drupal codebase, settings.php files, etc).

Production pipeline
(main branch)



Gitlab CI job: post-deployment

Production pipeline
(main branch)

Update all sites Clear Varnish on all sites Clear CSS & JS caches on all sites



Change Management

All changes to production must be disclosed in a 
central registry (ServiceNow), common to all 
McGill IT.

We use Gitlab pipelines to create and close 
Change Requests using the ServiceNow API, and 
post messages in chatroom.

Reduces bureaucracy.

Production pipeline
(main branch)

Create Change Request Close Change Request



Ansible & Drupal updates

Renovate bot.

Automatically creates a Merge Request when 
a dependency has a new version available.

Supports:

• Docker images (e.g. Ansible)

• Composer packages (e.g. Drupal modules)

• NodeJS packages

• Etc.

Highly configurable.

https://github.com/renovatebot/renovate

https://github.com/renovatebot/renovate


Site Management



Self-service tool for managing websites

Internal tool for site operations:

• Create website

• Delete website

• Edit website (e.g. change its config 
split)

• Rename website

• Copy website across environments

Each site may be assigned a config split if 
it requires extra functionality (e.g. a 
specific module or user role).

https://www.drupal.org/project/config_split

https://www.drupal.org/project/config_split


Self-service tool for managing websites

Sites are listed in an Ansible variable 
(authoritative source of truth) stored in a 
YAML file as part of our Git repo.

Internal tool maintains this variable (i.e. 
controls updates to the YAML file) and triggers 
CI pipelines via the Gitlab API.



Site creation



Development



Ansible in a container

Development environment based on 
Docker-Compose that mimics 
production.

Ansible tasks are re-used: websites are 
created locally the same way they are 
created on production.

Ansible runs:​
• With a local connection (instead of SSH)​
• On localhost (i.e. the container) instead of remote servers



Gitlab pipelines: VS Code "Dev Containers"

Regular VS Code VS Code with "Dev Containers" extension
https://marketplace.visualstudio.com/items?itemName=ms-vscode-

remote.remote-containers

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers


Gitlab pipelines: VS Code "Dev Containers"

Extensions installed 
inside the container

Explorer shows
files within the container

Edit files inside
the container

Shell opens within the 
container

VS Code runs within the same Docker image as Gitlab CI jobs (same Ansible version, OS version, etc).
Allows to reproduce the execution environment of the Gitlab CI jobs.



Tests & Quality



Tests in Gitlab CI pipeline



Ansible Lint

Automated code review for Ansible.

Allows to detect:

• YAML formatting errors

• Risky file permissions

• Obsolete Ansible modules

• Etc.

We run it in:

1. VS Code (code edits)

2. Git pre-commit hooks (code commits)

3. Gitlab CI pipelines (code push)

https://github.com/ansible/ansible-lint

https://marketplace.visualstudio.com/items?itemName=redhat.ansible

https://pre-commit.com/hooks.html

https://github.com/ansible/ansible-lint
https://marketplace.visualstudio.com/items?itemName=redhat.ansible
https://pre-commit.com/hooks.html


Molecule

Automated tests for Ansible.

Runs a sequence of tasks:

1. "Prepare": initialize the test environment

2. "Converge": execute Ansible tasks

3. "Verify": test what the Ansible tasks did

4. "Clean up": clean up the test environment

Summary of results exported to Gitlab and can 
be viewed directly in the web interface (Merge 
Request), along with other automated tests (PHPUnit).

https://github.com/ansible-community/molecule

https://github.com/ansible-community/molecule


PHP static analysis

Tools to statically analyze the code:

• PHP Linter (built into PHP)

• PHP Code Sniffer https://github.com/PHPCSStandards/PHP_CodeSniffer/

o Drupal

o DrupalPractice
o PHPCompatibility

• PHPStan https://phpstan.org/

Allows to detect:

• PHP syntax errors

• Debug functions e.g. kint(), debug_backtrace()

• Compliance with Drupal coding standards

• Dead code, undefined variables, methods, classes

• Drupal best practices e.g. dependency injection, 
translation, sanitization, security

Install via the drupal/core-dev composer package so we 
run the same version as Drupal core.

https://github.com/PHPCSStandards/PHP_CodeSniffer/
https://phpstan.org/


Composer

Validates composer.json and composer.lock.

Allows to detect:

• JSON formatting errors

• Missing packages in composer.lock

• Unsatisfied version constraints in 
composer.lock

• Contents of composer.lock out of date with 
composer.json (metadata, list of repos, 
dependencies, constraints, patches...)

Errors typically introduced when:

• Merging composer.json or composer.lock

• Manually changing these files



Frontend static analysis

Eslint & Stylelint

• JS and CSS linters

• Ensure custom JavaScript/CSS have a valid 
syntax and are compatible with Drupal coding 
standards

• Re-use config provided by Drupal core 
(.eslintrc.json and .stylelintrc.json)

Twig-linter

• Ensure custom Twig templates have a valid 
syntax and use valid filters

• https://github.com/sserbin/twig-linter

https://github.com/sserbin/twig-linter


Drupal config

Ensure Drupal exported config is internally 
consistent.

How to test:

1. Install fresh site from config export
drush site:install  --existing-config

2. Check if active config matches exported config
drush config:status

3. If a discrepancy is found, then fail

Example:

Module "scheduler" includes configuration settings.

If that module is listed as enabled in the exported 
config, then the associated configuration should 
also exist as a YAML file.



PHPUnit

Automated tests for Drupal.

Summary of results exported to Gitlab and can be 
viewed directly in the web interface (Merge Request).

HTML output of Functional tests exported as a Gitlab 
artifact and published as a static site on Gitlab Pages.



Code coverage report (PHPUnit)

Shows which parts of the code are executed when 
PHPUnit tests are run.

Gotcha: accounts for Unit and Kernel tests, but not 
Functional tests.

Report generated with Xdebug and published as a 
static site on Gitlab Pages.



Upcoming challenges

Preview changes before deployment (Ansible's "check" mode)

Automate synchronization of secrets with our password manager

Run phpunit in concurrent mode

Increase automated tests coverage

Deploy to the Cloud/Kubernetes



Thanks

Download these slides: Thomas Fline

thomas.fline@mcgill.ca

https://drupal.org/u/fengtan

https://github.com/fengtan

https://linkedin.com/in/thomasfline

https://www.mcgill.ca/it

https://github.com/fengtan/fengtan

mailto:thomas.fline@mcgill.ca
https://drupal.org/u/fengtan
https://github.com/fengtan
https://linkedin.com/in/thomasfline
https://www.mcgill.ca/it
https://github.com/fengtan/fengtan

